定义:称为个正数的“均倒数”.已知数列的前项的“均倒数”为,(1)求的通项公式;(2)设,试判断并说明数列的单调性;(3)求数列的前n项和.
已知复数. (1)求的实部与虚部; (2)若(是的共轭复数),求和的值.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)若不等式的解集为,求实数的值; (Ⅱ)在(Ⅰ)的条件下,若存在实数使成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同.直线的极坐标方程为:,点,参数. (Ⅰ)求点轨迹的直角坐标方程; (Ⅱ)求点到直线距离的最大值.
(本小题满分10分)选修4-1:几何证明选讲 已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交半圆于点,. (Ⅰ)求证:平分; (Ⅱ)求的长.
如图,已知抛物线:和⊙:,过抛物线上一点作两条直线与⊙相切于、两点,分别交抛物线于两点,圆心点到抛物线准线的距离为. (Ⅰ)求抛物线的方程; (Ⅱ)当的角平分线垂直轴时,求直线的斜率; (Ⅲ)若直线在轴上的截距为,求的最小值.