(本小题满分12分)在一次商贸交易会上,一商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有5个红球和3个白球的袋中有放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.
(本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。 ⑴写出(单位:元)关于(单位:克)的函数关系式; ⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率; ⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
(本小题满分12分)如图,在矩形中,,又⊥平面,.(Ⅰ)若在边上存在一点,使,求的取值范围;(Ⅱ)当边上存在唯一点,使时,求二面角的余弦值.
(本小题满分12分)已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
(Ⅰ)用x,y表示混合食物成本c元;(Ⅱ)确定x,y,z的值,使成本最低.
已知向量。(1)若f(x)=1,求cos(+x)的值;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围。
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)。17、(本小题满分10分)某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40, 50),[50, 60),…,[90, 100] 后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(I)求分数在 [70,80)内的频率,并补全这个频率分布直方图;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅲ) 根据频率分布直方图估计这次高一年级期中考试的学生成绩的中位数(保留整数)。