施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明.
如图1,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C,点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点.(1)求此二次函数的解析式和点C的坐标;(2)当点D的坐标为(1,1)时,连接BD、BE.求证:BE平分∠ABD;(3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.
已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②请直接写出正方形CEFG的边长的值.
已知抛物线y=(m﹣1)x2﹣2mx+m+1(m>1).(1)求抛物线与x轴的交点坐标;(2)若抛物线与x轴的两个交点之间的距离为2,求m的值;(3)若一次函数y=kx﹣k的图象与抛物线始终只有一个公共点,求一次函数的解析式.
已知二次函数y=2x2+m. (1)若点(﹣2,y1)与(3,y2)在此二次函数的图象上,则y1 y2(填“>”、“=”或“<”); (2)如图,此二次函数的图象经过点(0,﹣4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作DE⊥AP交AP于E点.(1)求证:DE为⊙O的切线;(2)若DE=3,AC=8,求直径AB的长.