已知全集,集合,(1)当时,求;(2)当集合满足时,求实数的取值范围.
(本小题满分12分) 已知,函数 (1)求函数的最小正周期; (2)当时,求函数的值域。
已知函数。 (1)若为的极值点,求实数的值; (2)若在上为增函数,求实数的取值范围; (3)若时,方程有实根,求实数b的取值范围。
已知正项数列满足:时,。 (1)求数列的通项公式; (2)设,数列的前n项和为,是否存在正整数m,使得对任意的,恒成立?若存在,求出所有的正整数m;若不存在,说明理由。
设函数。 (1)若时,函数取得极值,求函数的图像在处的切线方程; (2)若函数在区间内不单调,求实数的取值范围。
如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长,污水净化效果越好。设计要求管道的接口H是AB的中点,E、F分别落在线段BC、AD上,已知AB=20米,米,记。 (1)试将污水净化管道的长度L表示为的函数,并写出定义域; (2)若,求此时管道的长度L; (3)问:当取何值时,污水净化效果最好?并求出此时管道的长度。