有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.
求抛物线y=﹣2x2+8x﹣8的开口方向、对称轴及顶点坐标.
已知△ABC是正三角形,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上. (1)如图,在正三角形ABC及其内部,以点A为位似中心,画出正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不谢画法,但要保留画图痕迹); (2)若正三角形ABC的边长为3+ ,则(1)中画出的正方形E′F′P′N′的边长为.
如图,一条直线与反比例函数的图象交于A(1,4) B(4,n)两点,与轴交于D点,AC⊥轴,垂足为C. (1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标; (2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点. ①试说明△CDE∽△EAF; ②当△ECF为等腰三角形时,直接写出F点坐标.
如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置. (1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为; (2)请你在图中画出小亮站在AB处的影子; (3)当小亮离开灯杆的距离OB=4.2m时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?
如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上. (1)当△PQC的面积是四边形PABQ的面积时,求CP的长. (2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.