在一个不透明的袋子中,装有除颜色外其余均相同的红、黄、蓝三种球,其中有2个红球、1个蓝球,从中任意摸出一个是红球的概率为0.5(1)求袋中有几个黄球;(2)一手同时摸出两球(相当于第一次随机摸出一球,不放回,再随机摸出第二个球),请用画树状图或列表法求摸到两球至少一个球为红球的概率.
如图, 一座钢结构桥梁的框架是 ΔABC ,水平横梁 BC 长 18 米, 中柱 AD 高 6 米, 其中 D 是 BC 的中点, 且 AD⊥BC .
(1) 求 sinB 的值;
(2) 现需要加装支架 DE 、 EF ,其中点 E 在 AB 上, BE=2AE ,且 EF⊥BC ,垂足为点 F ,求支架 DE 的长 .
如图所示,梯形 ABCD 中, AB / / DC , ∠ B = 90 ° , AD = 15 , AB = 16 , BC = 12 ,点 E 是边 AB 上的动点,点 F 是射线 CD 上一点,射线 ED 和射线 AF 交于点 G ,且 ∠ AGE = ∠ DAB .
(1)求线段 CD 的长;
(2)如果 ΔAEG 是以 EG 为腰的等腰三角形,求线段 AE 的长;
(3)如果点 F 在边 CD 上(不与点 C 、 D 重合),设 AE = x , DF = y ,求 y 关于 x 的函数解析式,并写出 x 的取值范围.
如图,抛物线 y = a x 2 + bx - 5 ( a ≠ 0 ) 经过点 A ( 4 , - 5 ) ,与 x 轴的负半轴交于点 B ,与 y 轴交于点 C ,且 OC = 5 OB ,抛物线的顶点为点 D .
(1)求这条抛物线的表达式;
(2)联结 AB 、 BC 、 CD 、 DA ,求四边形 ABCD 的面积;
(3)如果点 E 在 y 轴的正半轴上,且 ∠ BEO = ∠ ABC ,求点 E 的坐标.
已知:如图, ⊙ O 是 ΔABC 的外接圆, AB ̂ = AC ̂ ,点 D 在边 BC 上, AE / / BC , AE = BD .
(1)求证: AD = CE ;
(2)如果点 G 在线段 DC 上(不与点 D 重合),且 AG = AD ,求证:四边形 AGCE 是平行四边形.
某物流公司引进 A 、 B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时, A 种机器人于某日0时开始搬运,过了1小时, B 种机器人也开始搬运,如图,线段 OG 表示 A 种机器人的搬运量 y A (千克)与时间 x (时 ) 的函数图象,线段 EF 表示 B 种机器人的搬运量 y B (千克)与时间 x (时 ) 的函数图象.根据图象提供的信息,解答下列问题:
(1)求 y B 关于 x 的函数解析式;
(2)如果 A 、 B 两种机器人连续搬运5个小时,那么 B 种机器人比 A 种机器人多搬运了多少千克?