抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
如图,A,F和B三点在一条直线上,CF⊥AB于F,AF=FH,CF=FB.求证:BE⊥AC.
在⊿ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF. 求证:⊿ABC是等腰三角形.
已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF//BA,交AE于点F,DF=AC. 求证:AE平分∠BAC.
已知:如图,⊿ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,求证:CF=EB.
如图(1)等腰直角三角形ABC中,∠ACB=90°,直线l过点C,AD⊥l,BE⊥l,垂足分别为D、E。 (1)求证:⊿ACD≌⊿CBE; (2)若直线l绕点C逆时针旋转与AB相交(如图(2))且AD⊥l,BE⊥l,上述结论还成立吗?请说明理由。