如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
已知:如图,在△BAC中,AB=AC,D、E分别是AB、AC的中点,且CD=BE. 求证:∠ADC=∠AEB
先化简,再求值:(x+y)(x-y)+(4x-8)÷4xy,其中x=2,y=1
把下列多项式分解因式. (1)-2y+x (2)4x-16
计算: (1)20152-2016×2014 (2)(x4-2x2y2)÷x2-(x+y)2
阅读理解:如图,A.B.C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为-1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点. 知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4. (1)数 所表示的点是【M,N】的好点; (2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?