(本小题满分12分)在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线(为参数),(为参数).(Ⅰ)化,的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若上的点对应的参数为,为上的动点,求中点到直线距离的最小值.
成等差数列的四个数的和为,第二数与第三数之积为,求这四个数。
求符合下列条件的椭圆标准方程: (1)焦距为8,离心率为0.8 ; (2)焦点与长轴较接近的端点的距离为,焦点与短轴两端点的连线互相垂直。
已知数列中,,且 (Ⅰ) 求数列的通项公式; (Ⅱ) 令,数列的前项和为,试比较与的大小; (Ⅲ) 令,数列的前项和为.求证:对任意, 都有。
(文科做)已知函数(b、c为常数). (1) 若在和处取得极值,试求的值; (2) 若在、上单调递增,且在上单调递减,又满足,求证:。
(理科做)已知 (I)若a=3,求的单调区间和极值; (II)已知是的两个不同的极值点,且,若恒成立,求实数的取值范围。