如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.
如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD与H,BC=BH=2.动点从点出发,以每秒1个单位的速度沿运动到点停止,在运动过程中,过点作交折线于点,将纸片沿直线折叠,点、的对应点分别是点、。设点运动的时间是秒()。(1)当点和点重合时,求运动时间的值;(2)在整个运动过程中,设或四边形与梯形重叠部分面积为,请直接写出与之间的函数关系式和相应自变量的取值范围;(3)平移线段,交线段于点,交线段。在直线上存在点,使为等腰直角三角形。请求出线段的所有可能的长度。
2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划” 建设智慧重庆。 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量(台)与月份x(月)之间存在如图所示的变化趋势:(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出与x之间的函数关系式,根据如图所示的变化趋势,直接写出与x之间满足的一次函数关系式;(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金(万元)与月份x满足函数关系式: ,(1≤x≤7,且x为整数);8至12月份的资金投入(万元)与月份x满足函数关系式:(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元。若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值。(参考数据:172=289,182=324,192=361)
如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE(1)若正方形ABCD的边长为4,BE=3,求EF的长?(2)求证:AE=EC+CD.
某空调专卖店在四个月的试销期内,只销售A、B两个品牌的空调,共售出400台,试销结束后,选择A、B两个品牌的空调共5台中的2台捐到某希望小学,为作出决定,经销人员正在绘制两副统计图,如图①和图②(1)第四个月销量对应的扇形圆心角的度数是 (2)在图②中补全表示B品牌空调月销量的折线;(3)为了献爱心,从该商店第四个月售出的空调中,选取A品牌2台B品牌3台共5台中随机抽取2台捐到某希望小学,请用列表或画树状图的方法,求随机抽取到同一品牌的概率多少?
如图,在平面直角坐标系中,二次函数经过点O、A、B三点,且A点坐标为(4,0),B的坐标为(m,),点C是抛物线在第三象限的一点,且横坐标为-2.(1)求抛物线的解析式和直线BC的解析式。(2)直线BC与 x轴相交于点D,求△OBC的面积