(本小题满分12分)某军区新兵步枪射击个人平均成绩(单位:环)服从正态分布,从这些个人平均成绩中随机抽取个,得到如下频数分布表:
(Ⅰ)求和的值(用样本数学期望、方差代替总体数学期望、方差);(Ⅱ)如果这个军区有新兵名,试估计这个军区新兵步枪射击个人平均成绩在区间上的人数[参考数据:,若,则,,].
中,内角的对边分别是,已知成等比数列,且(Ⅰ)求的值 (Ⅱ)设,求的值。
、设是定义在上的增函数,对任意,满足。(1)、求证:①当(2)、若,解不等式
已知向量.是否存在实数若存在,则求出x的值;若不存在,则证明之
设a为实数,记函数的最大值为.(1)设,求t的取值范围,并把表示为t的函数;(2)求;(3)试求:满足的所有实数.
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.(Ⅰ)求xn+1与xn的关系式;(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)(Ⅲ)设a=2,b>0,c=1为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的最大允许值是多少?证明你的结论.