(本小题满分13分)已知函数,,其中,为自然对数的底数.(Ⅰ)求在上的最小值;(Ⅱ)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
已知数列是首项为,公比的等比数列.设,,数列满足;(Ⅰ)求证:数列成等差数列;(Ⅱ)求数列的前项和;(Ⅲ)若对一切正整数恒成立,求实数的取值范围.
已知函数(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的极值;(Ⅲ)对恒成立,求实数的取值范围.
设,函数.(Ⅰ)求的值;(Ⅱ)求函数的单调区间.
已知等差数列的前项和为,公差,,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和公式.
在中,角A、B,C,所对的边分别为,且(Ⅰ)求的值;(Ⅱ)若,求的面积.