(本题6分)如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的;(2)△ABC的面积为 _;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数).
解下列方程(组):(1) (2)
已知:,试判断直线一定经过哪些象限,并说明理由。
先化简:,并从0,,2中选一个合适的数作为的值代入求值
(本小题满分12分)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用含t的式子表示△OPQ的面积S;(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;(3)当△OPQ∽△ABP时,抛物线y=x2+bx+c经过B、P两点,求抛物线的解析式;(4)在(3)的条件下,过线段BP上一动点M作轴的平行线交抛物线于N,求线段MN的最大值.
(本小题满分10分)某商场试销一种成本为每件60元的服装,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;(3)若该商场想获得500元的利润且尽可能地扩大销售量,则销售单价应定为多少元?(4)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?