(本题8分)今年我市为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵,乙种树苗买了y棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时,购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26000元,求n的最大值.
在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M、N,已知△AOB的面积为3,点M的纵坐标为4.(1)求一次函数与反比例函数的解析式;(2)求点N的坐标并直接写出当y1>y2时,的取值范围.
某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为15万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为284万元?
已知关于x的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.
某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求的值;(3)当时,大棚内的温度约为多少度?
如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)。(1)求点D的坐标;(2)求经过点C的反比例函数解析式.