已知函数,其中常数.(1)令,判断函数的奇偶性,并说明理由;(2)令将函数向左平移个单位,再向上平移1个单位,得到函数的图像.对任意,求在区间上的零点 个数的所有可能值.
(本小题满分12分) 甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系。若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格)。 (1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量; (2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?
(本小题满分12分) 已知函数f(x)=alnx+x2(a为实常数). (Ⅰ)若a=-2,求证:函数f(x)在(1,+∞)上是增函数; (Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值;
已知是函数的一个极值点。 (1)求的值; (2)求函数的单调区间; (3)若直线与函数的图象有3个交点,求的取值范围。
(本小题满分12分) 求由抛物线,直线所围成的图形的面积
(本小题满分12分)