如图,是圆的直径,点在圆上,,交于点,平面,,,,.(1)证明:;(2)求三棱锥的体积.
(本小题满分16分)设数列的通项公式为,数列定义如下:对于正整数,是使得不等式成立的所有中的最小值.(1)若,求;(2)若,求数列的前项和公式;(3)是否存在和,使得?如果存在,求和的取值范围?如果不存在,请说明理由.
(本小题满分16分)对于函数,如果它们的图象有公共点P,且在点P处的切线相同,则称函数和在点P处相切,称点P为这两个函数的切点.设函数,.(1)当,时,判断函数和是否相切?并说明理由;(2)已知,,且函数和相切,求切点P的坐标; (3)设,点P的坐标为,问是否存在符合条件的函数和,使得它们在点P处相切?若点P的坐标为呢?(结论不要求证明)
(本小题满分16分)如图(1),有一块形状为等腰直角三角形的薄板,腰AC的长为a米(a为常数),现在斜边AB上选一点D,将△ACD沿CD折起,翻扣在地面上,做成一个遮阳棚,如图(2). 设△BCD的面积为S,点A到直线CD的距离为d. 实践证明,遮阳效果y与S、d的乘积Sd成正比,比例系数为k(k为常数,且k>0).(1)设∠ACD=,试将S表示为的函数;(2)当点D在何处时,遮阳效果最佳(即y取得最大值)?
(本小题满分14分)在平面直角坐标系xoy中,椭圆C :的离心率为,右焦点F(1,0),点P在椭圆C上,且在第一象限内,直线PQ与圆O:相切于点M.(1)求椭圆C的方程;(2)求|PM|·|PF|的取值范围;(3)若OP⊥OQ,求点Q的纵坐标t的值.
(本小题满分14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.