(1)设a>b>0,试比较与的大小.(2)设不等式的解集为A,不等式的解集为B.若不等式的解集为A∩B,求的值.
如图,已知正三棱柱的各棱长都是4,是的中点,动点在线段上,且不与点、重合. (1)若,求平面与平面的夹角的余弦值; (2)求点到直线距离的最小值.
甲、乙两位同学各有3张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时甲赢得乙一张卡片,否则乙赢得甲一张卡片.规定掷硬币的次数达6次时,或在此前某人已赢得所有卡片时游戏终止。设表示游戏终止时掷硬币的次数。 (1)求第三次掷硬币后甲恰有4张卡片的概率; (2)求的分布列和数学期望.
已知数列的前项和为,且满足:,. (1)求数列的通项公式; (2)设,求数列的前项和为.
设函数. (1)求的最大值; (2)求的对称中心; (3)将的图像按向量平移后得到的图象关于坐标原点对称,求长度最小的.
已知. (I)当时,判断在定义域上的单调性; (II)若在(e是自然对数的底)上的最小值为,求的值.