(本小题14分)在平面直角坐标系中,曲线C1的参数方程为 (a>b>0, 为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点对应的参数.与曲线C2交于点.(1)求曲线C1,C2的直角坐标方程;(2),是曲线C1上的两点,求 的值.
在平面直角坐标系xOy中,已知ΔPAB的顶点,P为动点,且.记动点P的轨迹为曲E(I) 求曲线E的方程;(II)设l是既不与AB平行也不与AB垂直的直线,且原点O到直线l的距离为,l与曲线E相交于不同的两点G、H,问的值是否为定值?若为定值,求出此定值;若不是,请说明理由.
巳知数列{an}的前n项和为,且,数列{bn}满足,(I)证明:数列{an}为等比数列;(II)求数列{an}和{bn}的通项公式;(III)记,数列{cn}的前n项和为Tn,比较2Tn与的大小.
“天宫一号”的顺利升空标志着我国火箭运载的技术日趋完善.据悉,担任“天宫一号”发射任务的是长征二号FT1火箭.为了确保发射万无一失,科学家对长征二号FT1运载火箭进行了 170余项技术状态更改,增加了某项新技术.该项新技术要进入试用阶段必须对其中四项不同指标甲、乙、丙、丁进行通过量化检测. 假设该项新技术的指标甲、乙、丙、丁独立通过检测合格的概率分别为,指标甲、乙、丙、丁被检测合格分别记4分、3分、2分、1分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响.(I )求该项新技术量化得分为6分的概率;(II)求该项新技术的四个指标中恰有三个指标被检测合格化得分不低于7分的概率
如图,在四棱锥P—ABCD中,底面ABCD是边长为4的菱形,且,菱形ABCD的两条对角线的交点为0,PA=PC,PB=PD,且PO=3.点E是线段PA的中点,连接EO、EB、EC. (I)证明:直线OE//平面PBC;(II)求二面角E-BC-D的大小
已知ΔABC中,内角A、B、C所对边的长分别是a、b、c,且点在直线 x—y=(a—b) sinB上(I)求角C的大小;(II)若,且A<B,求的值.