(本小题满分13分)甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是,,,且面试是否合格互不影响.求:(Ⅰ)至少有1人面试合格的概率;(Ⅱ)签约人数的分布列和数学期望.
已知数列中,. (1)设,求数列的通项公式; (2)求使不等式成立的的取值范围.
已知点,椭圆E:的离心率为;F是椭圆E的下焦点,直线AF的斜率为,O为坐标原点。 (1)求E的方程; (2)设过点A的动直线与E 相交于M,N两点,当的面积最大时,求的直线方程.
在△ABC中,角A,B,C所对的边分别为,b,c,且,=1,b=2. (1)求∠C和边c; (2)若,,且点P为△BMN内切圆上一点,求的最值.
已知函数(为常数)。 (1)若是函数的一个极值点,求的值; (2)当时,试判断的单调性; (3)若对任意的存在,使不等式恒成立,求实数的取值范围.
设公差不为0的等差数列, 恰好是等比数列的前三项,。 (1)求数列、的通项公式; (2)记数列的前n项和为,若对任意的, 恒成立,求实数的取值范围.