(本小题满分10分)已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.(1)求数列、的通项公式;(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
不用计算器求下列各式的值:(1);(2).
已知集合,,,.(1)求; (2)若,求实数的取值范围.
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、.(1)求圆和圆的方程;(2)过点作的平行线,求直线被圆截得的弦的长度;
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.
求与圆外切于点,且半径为的圆的方程.