【2015高考重庆,理20】 设函数(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;(2)若在上为减函数,求的取值范围。
如图,四棱锥的底面是直角梯形,,,且,顶点在底面内的射影恰好落在的中点上.(1)求证:;(2)若,求直线与所成角的 余弦值;(3)若平面与平面所成的二面角为,求的值.
已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆 的方程.
如图,斜四棱柱的底面是矩形,平面⊥平面,分别为的中点.求证:(1);(2)∥平面.
已知为实数,:点在圆的内部; :都有.(1)若为真命题,求的取值范围;(2)若为假命题,求的取值范围;(3)若“且”为假命题,且“或”为真命题,求的取值范围.
如图,设椭圆:的离心率,顶点的距离为,为坐标原点.(1)求椭圆的方程;(2)过点作两条互相垂直的射线,与椭圆分别交于两点.(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;(ⅱ)求的最小值.