如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?
已知函数为奇函数 1)、求的值;2)当时,关于的方程有解,求实数的取值范围;
已知命题p:方程有两个不相等的正实数根,命题q:函数的图象与轴无公共点;若“p且q”为真命题,求的取值范围.
已知函数,, (I)设函数,讨论的极值点的个数; (II)若,求证:对任意的,且时,都有
已知函数 (I)若满足,求的取值范围; (II)是否存在正实数,使得集合,如果存在,请求出的取值范围;反之,请说明理由.
已知函数 (I)求函数的单调区间;(II)若关于的不等式对一切都成立,求实数的取值范围.