(本题10分)在“走基层,树新风”活动中,青年记者石剑深入边远山区,随机走访农户,调查农村儿童生活教育现状。根据收集的数据字编制了不完整的统计图表如下:请你用学过的统计知识,解决问题:(1)记者石剑走访了边远山区多少家农户?(2)将统计图表中的空缺数据正确填写完整;(3)分析数据后,请你提一条合理建议.
已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B. (Ⅰ)如图①,若∠BAC=250,求∠AMB的大小; (Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.
在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下: (Ⅰ)求这50个样本数据的平均数、众数和中位数; (Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动.
已知反比例函数(k为常数,k≠1). (Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值; (Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围; (Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.
解不等式组
R M O 1 O 2 如图半径分别为 m , n ( 0 < m < n ) 的两圆 ⊙ O 1 和 ⊙ O 2 相交于 P , Q 两点,且点 P ( 4 , 1 ) ,两圆同时与两坐标轴相切, ⊙ O 1 与 x 轴, y 轴分别切于点 M ,点 N , ⊙ O 2 与x轴, y 轴分别切于点 R ,点 H . (1)求两圆的圆心 O 1 , O 2 所在直线的解析式; (2)求两圆的圆心 O 1 , O 2 之间的距离 d ; (3)令四边形 P O 1 Q O 2 的面积为 S 1 ,四边形RMO1O2的面积为 S 2 . 试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为 s 1 - s 2 2 d 的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.