(本题8分)设点A的坐标(x,y),其中横坐标x可取-1,2,纵坐标y可取-1,1,2。(1)求出点A的坐标的所有等可能结果(用树形图或列表法求解);(2)求点A与点B(1,-1)关于原点对称的概率。
如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线。已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长l(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计)。(参考数据:sin67.4°≈,cos67.4°≈,,tan67.4°≈)
某校公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:
(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图(1)中,将反映老师学历情况的条形统计图补充完整;(3)在图(2)中,标注扇形统计图中表示老师职称为初级和高级的百分比;(4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?
如图,已知∠AOB以O为圆心,以任意长为半径作弧,分别交OA、OB于F、E两点,再分别以E、F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线OP,过点F作FD∥OB交OP于点D。(1)若∠OFD=116°,求∠DOB的度数;(2)若FM⊥OD,垂足为M,求证△FMO≌△FMD.
先化简,若结果等于,求出相应的x的值。
如图,在梯形纸片ABCD中,BC∥AD,∠A+∠D=90°,tanA=2,过点B作BH⊥AD与H,BC=BH=2.动点从点出发,以每秒1个单位的速度沿运动到点停止,在运动过程中,过点作交折线于点,将纸片沿直线折叠,点、的对应点分别是点、。设点运动的时间是秒()。(1)当点和点重合时,求运动时间的值;(2)在整个运动过程中,设或四边形与梯形重叠部分面积为,请直接写出与之间的函数关系式和相应自变量的取值范围;(3)平移线段,交线段于点,交线段。在直线上存在点,使为等腰直角三角形。请求出线段的所有可能的长度。