【2015高考广东,理21】数列满足,(1)求的值;(2)求数列前项和;(3)令,,证明:数列的前项和满足.
如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC. (Ⅰ)证明:平面ADE∥平面BCF; (Ⅱ)求二面角D-AE-F的正切值.
已知常数满足,解关于的不等式:.
在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数). (1)求曲线的直角坐标方程以及曲线的普通方程; (2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.
已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点. (1)证明:; (2)若,求的值.
已知函数. (1)求函数的最大值; (2)若函数与有相同极值点, ①求实数的值; ②若对于(为自然对数的底数),不等式恒成立,求实数的取值范围.