【2015高考新课标1,文24】(本小题满分10分)选修4-5:不等式选讲 已知函数 . (Ⅰ)当 时求不等式 的解集; (Ⅱ)若 图像与x轴围成的三角形面积大于6,求a的取值范围.
如图,正四棱柱中,设,,若棱上存在点满足平面,求实数的取值范围.
在极坐标系中,已知点,,求以为直径的圆的极坐标方程.
设矩阵,若矩阵的属于特征值1的一个特征向量为,属于特征值2的一个特征向量为,求实数的值.
(本小题满分16分)已知函数的图象在上连续不断,定义:,其中,表示函数在区间上的最小值,表示函数在区间上的最大值.若存在最小正整数,使得对任意的成立,则称函数为区间上的“阶收缩函数”.(1)若,试写出的表达式;(2)已知函数试判断是否为上的“阶收缩函数”,如果是,求出相应的;如果不是,请说明理由;(3)已知函数是上的2阶收缩函数,求的取值范围.
(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+,S3=12+.(1)求数列{an}的通项公式an及前n项和Sn;(2)记bn=an-,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且,,…,,…成等比数列,其中n1=1,n2=3,求nk(用k表示);(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.