莘县旅游资源丰富,其中燕塔是莘县著名旅游景点(如图①).一天身高1.5m的小明从A处仰视观看燕塔顶部,其仰角为30°.小明又向西走了30m,∠APB=15°(如图②).请你帮小明算出雁塔的高度.(结果保留一位小数,参考数据:≈1.41,≈1.73)
在平面直角坐标系中,矩形OABC的顶点A坐标为(0,3),顶点C坐标为(8,0).直线交AB于点D,点P从O点出发,沿射线OD方向以每秒个单位长度的速度移动,同时点Q从C点出发沿x轴向原点O方向以每秒1个单位长度的速度移动,当点Q到达O点时,点P停止移动.连结PB,PC,设运动时间为秒.(1)求D点坐标;(2)当△PBC为等腰三角形时,求P点坐标;(3)若点P,Q在运动过程中存在某一时刻,使得以点O,P,Q为顶点的三角形与△BCQ相似,求P的运动速度a的值.
如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
(1)如图1,直线//////,且与,与之间的距离均为1,与之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当时,求菱形的边长.
如图,以O为圆心的度数为60°,∠BOE=45°,DA⊥OB,EB⊥OB.(1)的值为 ;(2)若OE与交于点M,OC平分∠BOE,连接CM.求证:CM为⊙O的切线;(3)在(2)的条件下,若BC=1,求tan∠BCO的值.
甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行 米的长跑训练,在0<<15的时间内,速度较快的人是 (填“甲”或“乙”);(2)求乙距终点的路程(米)与跑步时间之间的函数关系式;(3)当=15时,两人相距多少米?(4)在15<<20的时间段内,求两人速度之差.