某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?
先化简,再求值:,其中,x满足且x为整数.
开发区有A,B两个仓储中心,m是仓储中心附近的一条主干道,画出连接AB的线路,再作出从AB的中点P到主干道m最近的路线. (要求:用尺规作图,并保留作图痕迹)
计算:
已知是半圆的直径, 点在的延长线上运动(点与点不重合), 以为直径的半圆与半圆交于点的平分线与半圆交于点. 如图甲, 求证: 是半圆的切线; 如图乙, 作于点, 猜想与已有的哪条线段的一半相等, 并加以证明; 如图丙, 在上述条件下, 过点作的平行线交于点, 当与半圆相切时, 求 甲乙的正切值.
如图,已知二次函数的图象与轴交于A、B两点,与轴交于点P,顶点为C(1,-2). (1)求此函数的关系式; (2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标; (3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.