如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比_______ (3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标._______;_______;_______
已知△ABC是等边三角形. (1)将△ABC绕点A逆时针旋转角(0°<<180°),得到△ADE,BD和EC所在直线相交于点O. ①如图,当a =20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度; ②当△ABC旋转到如图b所在位置时,求∠BOE的度数; (2)如图,c在AB和AC上分别截取点B′和C′,使AB=AB′,AC=AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<<180°),得到△ADE BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.
随着“六一”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出。 (1)若某月销售收入2000万元,则该月甲、乙礼品的产量分别是多少? (2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大? (3)该厂在销售中发现:甲礼品售价每提高1元,销量会减少4万件,乙礼品售价不变,不管多少产量都能卖出。在(2)的条件下,为了获得更大的利润,该厂决定提高甲礼品的售价,并重新调整甲、乙礼品的生产数量,问:提高甲礼品的售价多少元时可获得最大利润,最大利润为多少万元?
某市规划局计划在一坡角为16°的斜坡AB上安装一球形雕塑,其横截面示意图如图所示.已知支架AC与斜坡AB的夹角为28°,支架BD⊥AB于点B,且AC、BD的延长线均过⊙O的圆心,AB=12m,⊙O的半径为1.5m,求雕塑最顶端到水平地面的垂直距离.(结果精确到0.01m) (参考数据:cos28°≈0.9,sin62°≈ 0.9, sin44°≈0.7, cos46°≈ 0.7)
已知与是反比例函数图象上的两个点。 (1)求的值; (2)求直线AB的函数解析式; (3)若点,点是反比例函数图象上的一点,如果以四点为顶点的四边形为梯形,请你求出点的坐标(能求出一个点即可)
。
在ABCD中,E、F分别是AB、CD的中点,连接AF、CE. (1)求证:△BEC≌△DFA; (2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.