(本小题满分10分)已知,如图所示,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E,若DE=6cm,AE=3cm,求⊙O的半径.
鄂州某个体商户购进某种电子产品的进价是50元 / 个,根据市场调研发现售价是80元 / 个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低 x 元 ( x 为偶数),每周销售量为 y 个.
(1)直接写出销售量 y 个与降价 x 元之间的函数关系式;
(2)设商户每周获得的利润为 W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:
根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,补全条形统计图.
(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.
如图,将矩形 ABCD 沿对角线 AC 翻折,点 B 落在点 F 处, FC 交 AD 于 E .
(1)求证: ΔAFE ≅ ΔCDE ;
(2)若 AB = 4 , BC = 8 ,求图中阴影部分的面积.
如图1,抛物线 y = - x 2 + bx + c 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 ) .
(1)求抛物线的表达式;
(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;
(3)如图2,点 M 为该抛物线的顶点,直线 MD ⊥ x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.
如图, ΔABC 和 ΔCDE 都是等边三角形,点 B 、 C 、 E 三点在同一直线上,连接 BD , AD , BD 交 AC 于点 F .
(1)若 A D 2 = DF · DB ,求证: AD = BF ;
(2)若 ∠ BAD = 90 ° , BE = 6 .
①求 tan ∠ DBE 的值;②求 DF 的长.