(本小题满分12分)已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(Ⅰ)若M为CB中点,证明:;(Ⅱ)求这个几何体的体积.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (Ⅰ)求证:平面. (Ⅱ)求二面角的余弦值.
已知椭圆的一个顶点为A(0,-1),焦点在轴上,若右焦点到直线的距离为3. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆与直线相交于不同的两点M、N,问是否存在实数使;若存在求出的值;若不存在说明理由。
在平面直角坐标系中,直线与抛物线相交于不同的两点. (Ⅰ)如果直线过抛物线的焦点,求的值; (Ⅱ)在此抛物线上求一点P,使得P到的距离最小,并求最小值.
已知半径为的圆的圆心M在轴上,圆心M的横坐标是整数,且圆M与直线相切. 求:(Ⅰ)求圆M的方程; (Ⅱ)设直线与圆M相交于两点,求实数的取值范围.
(本小题满分14分)已知:定义在R上的函数,对于任意实数a, b都满足,且,当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.