晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个.其中A 品牌文具盒的进货价比B品牌文具盒的进货价多3元.(1)求A、B两种文具盒的进货单价;(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少?
已知反比例函数(1)若点A(1,2)在这个函数的图像上,求k的值;(2)若在这个函数图像的每一分支上,y随x的增大而减小,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图像上,并说明理由。
已知 关于x的一元二次方程有两个相等的实数根, 求: m的值及方程的根。
解方程:
如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y=x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.求OA所在直线的解析式.求a的值.当m≠3时,求S与m的函数关系式如图②,设直线PE交射线OC于点R,交抛物线于点Q.以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是 ,∠CAC′= °.问题探究 如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸 如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=" k" AE,AC=" k" AF,试探究HE与HF之间的数量关系,并说明理由