(本题8分)某校学生会为了了解学生上网时间情况,从全校3600名学生中随机选取一部分学生进行调查.调查时将每周上网时间情况分为:A:上网时间≤1小时;B:1小时<上网时间≤4小时;C:4小时<上网时间≤7小时;D:上网时间>7小时.根据统计结果制成了如下统计图:(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校每周上网不超过7小时的学生人数.
(本小题满分6分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口. (1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果; (2)求这两辆汽车都向左转的概率.
(本小题满分6分) 如图,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆 的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,人的 眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆的高度.
(本小题满分8分,每题4分) (1)不解方程,判断方程根的情况. (2)求抛物线与x轴的两个交点坐标.
如图,在平面直角坐标系中,的三个顶点坐标分别为(,1),(,4),(,2).以原点为位似中心,位似比为1:2,在轴的左侧,画出放大后的图形,并直接写出点坐标;
已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题: (1)当t为何值时,四边形APFD是平行四边形? (2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式; (3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.