(本小题5分)我们定义:如图1,矩形MNPQ中,点K、O、G、H分别在NP、PQ、QM、MN上,若,则称四边形KOGH为矩形MNPQ的反射四边形.如图2、图3四边形ABCD、A’B’C’D’均为矩形,它们都是由32个边长为1的正方形组成的图形,点E、F、E’、F’分别在BC、CD、B’C’、C’D’边上,试利用正方形网格在图2、图3中分别画出矩形ABCD和矩形A’B’C’D’的反射四边形EFGH和E’F’G’H’.
已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上. (1)求此二次函数的解析式; (2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式; (3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.
下面给出的正多边形的边长都是20cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,剪拼线段用粗黑实线表示,在图中标注出必要的符号和数据,并作简要说明.) (1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等; (2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等.
某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10个. (1)设每个定价增加元,此时的销售量是多少?(用含的代数式表示) (2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元? (3)超市若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
如图,.是反比例函数(k>0)在第一象限图象上的两点,点的坐标为(2,0),若△与△均为等边三角形. (1)求此反比例函数的解析式; (2)求点的坐标.
用一张长12cm宽5cm的矩形纸片折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(方案一),小丰同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF(方案二).谁折出的菱形面积更大?请你通过计算说明.