.如图,△ABC、△DCE、△GEF都是正三角形,且B、C、E、F在同一直线上,A、D、G也在同一直线上,设△ABC、△DCE、△GEF的面积分别为S1、S2、S3.当S1=4,S2=6时,S3= .
计算:= .
已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=3,BC=4.若P为线段AB上任意一点,延长PD到E,使DE=2PD,再以PE、PC为边作□PCQE,求对角线PQ的最小值 .
如图,点C、D分别在⊙O的半径OA、OB的延长线上,且OA=6,AC=4,CD平行于AB,并与AB相交于MN两点.若tan∠C=,则CN的长为 .
如图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE= .
如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=130°,则∠A′NC= °.