如图1,在平面直角坐标系中,四边形OABC是矩形,OA=4,OC=3.直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,且保持直线m∥AC.设直线m与矩形OABC的其中两条边分别交于点M、N,直线m运动的时间为t(秒),△OMN的面积为S,且S与t的函数图象如图2(实线部分)所示.
先化简再求值 :
如图,抛物线与x轴交于A、B两点,与y轴交于点C(0,-3)[图14(2)、图14(3)为解答备用图.(1)k=_______,点A的坐标为___________,点C的坐标为_____________.(2)设抛物线的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.
已知,如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)∠若B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,希望中学要从甲、乙两品牌电脑中各选一种型号的电脑。(1)写出所有选购方案(利用树状图或列表法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如右图所示),恰好用了10万元人民币,其中甲品牌电脑为A型电脑,求购买A型号电脑有几台?
如图,AB为⊙O的直径,弦CD⊥AB,垂足为点M,AE切⊙O于点A,交BC的延长线于点E,连接AC.(1)若B=30°,AB=2,求CD的长;(2)求证:AE2=EB·EC.