(本小题满分12分)已知数列的通项公式为(),且=-,=-.(1)求的通项公式;(2)是否为数列中的项,若是,是第几项?若不是请说明理由。(3)该数列是递增数列还是递减数列?
(本小题满分14分)在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于坐标原点.椭圆E:与圆的一个交点到椭圆E的两焦点的距离之和为.(Ⅰ)求圆和椭圆E的方程;(Ⅱ)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.
(本小题满分14分)如图所示,棱长为2的正方体中,、分别为、的中点.(Ⅰ)求证://平面;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
(本小题满分14分)一个口袋中装有大小相同的二个白球:,三个黑球:.(Ⅰ)若从口袋中随机地摸出一个球,求恰好是白球的概率;(Ⅱ)若从口袋中一次随机地摸出两个球,求恰好都是白球的概率.
(本小题满分12分)设函数f (x)=,其中向量=(cosx+1,), =(cosx-1,2sinx),x∈R.(Ⅰ)求f (x)的解析式;(Ⅱ)求f (x)的最小正周期、对称轴方程和对称中心的坐标。
(本小题满分14分)设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,数列{bn―2}是等比数列(n∈N*). (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)是否存在k∈N*,使?若存在,求出k,若不存在,说明理由.