“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP. ⑴如图②,若M为AD边的中点,①△AEM的周长=_____cm;②求证:EP=AE+DP; ⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
(本题13分)当Rt⊿的直角顶点P要正方形ABCD对角线AC上运动(P与A、C不重合)且一直角边始终过点D,另一直角边与射线BC交于点E, (1)如图1,当点E与BC边相交时,①证明:⊿PBE为等腰三角形; ②写出线段AP、PC与EC之间的等量关系(不必证明) (2)当点E在BC的延长线上时,请完成图2,并判断(1)中的①、②结论是否分别成立?若不成立,写出相应的结论(不必证明)
(12′)王华、张伟两位同学九年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示: (1)根据上图中提供的数据填写下表:
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是________. (3)如果要从这两个同学选一位去参加数学竞赛,你可以给老师一些建议吗?
如图,矩形ABCD中,对角线AC、BD交于点O,DE∥OC,CE∥OD,试判断四边形OCDE是何特殊四边形,并加以证明。(8′)
先将化简,然后选取一个你喜欢的a的值,代入求值.