(本小题满分10分)选修4—1:几何证明选讲如图所示,PA为圆O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分线与BC和圆O分别交于点D和E.(1)求证:;(2)求AD·AE的值.
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
已知函数在处取得极值.(1)讨论和是函数的极大值还是极小值;(2)过点作曲线的切线,求此切线方程.
)
已知函数(a<0, ,设关于x的方程的两根为,的两实根为、.
设函数(1)解不等式f(x)<0;(2)试推断函数f(x)是否存在最小值?若存在,求出其最小值;若不存在,说明理由.
1.已知数列,其中,且数列为等比数列,求常数.2.设是公比不相等的两个等比数列,,证明数列不是等比数列.