如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.(1)判断△ABC的形状: ;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
如图,已知△ABC中,∠C=90°,∠B=15°,AC=2cm,分别以A、B两点为圆心,大于AB的长为半径画弧,两弧分别相交于E、F两点,直线EF交BC于点D,求BD的长.
如图,梯形ABCD中,AD∥BC,∠BAD=90°,AD=1,E为AB的中点,AC是ED的垂直平分线. (1)求证:DB=DC; (2)在图(2)的线段AB上找出一点P,使PC+PD的值最小,标出点P的位置,保留画图痕迹,并求出PB的值.
设直线l1和直线l2相交,交点为O,其夹角为α.如果线段AB关于l1的轴对称图形是A′B′,而A′B′关于l2的轴对称图形是A″B″.试问AB和A″B″间有什么关系?(见图)
如果一个图形有两条对称轴,如长方形,那么这两条对称轴夹角是多少度?其他有两条对称轴的图形的两条对称轴是否也具有这个特征?如果一个图形有三条对称轴,如正三角形,它的三条对称轴相邻两条的夹角是多少度?其他有三条对称轴的图形的三条对称轴是否也具有这个特征?如果一个图形有n条对称轴,那么每相邻的两条对称轴的夹角为多少度?
(1)请找出下图中每个正多边形对称轴的条件,并填入下表.
(2)请写出正多边形的对称轴的条数y随正多边形的边数n(n≥3)变化的关系式y="n" .