设甲、乙两射手独立地射击同一目标,他们击中目标的概率分别为0.95,0.9.求:(1)在一次射击中,目标被击中的概率; (2)目标恰好被甲击中的概率.
为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟的跳绳次数测试,将取得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率约为多少.
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率.
已知函数,若在x=1处的切线方程是3x+y-6=0(Ⅰ)求函数的解析式;(Ⅱ)若对任意的,都有成立,求函数的最值.
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.(Ⅰ)求椭圆C的方程;(Ⅱ)过椭圆C的右焦点F作直线交椭圆C于A,B两点,交y轴于M点,若, 求证为定值.
设数列的前n项和为,为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前n项和。