(本小题满分12分)已知数列的前和,数列的通项公式.(1)求数列的通项公式;(2)设,求证:;
(本小题满分10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求的取值范围。
(本小题满分12分)设函数,(且)。(1)设,判断的奇偶性并证明;(2)若关于的方程有两个不等实根,求实数的范围;(3)若且在时,恒成立,求实数的范围。
(本题满分12分) 设是定义在上的增函数,令(1)求证时定值;(2)判断在上的单调性,并证明;(3)若,求证。
(本小题12分)已知函数的图象与轴相交于点M,且该函数的最小正周期为.(1)求和的值; (2)已知点,点是该函数图象上一点,点是的中点,当,时,求的值。
(本小题满分12分)已知为圆上任一点,且点. (1)若在圆上,求线段的长及直线的斜率;(2)求的最大值和最小值;(3)若,求的最大值和最小值.