在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于,求m的值.
.在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=35º,求∠ACF度数.
.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.试猜想线段BC和EF的数量及位置关系,并证明你的猜想
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9. (1)求DC和AB的长; (2)证明:∠ACB=90°.
如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(保留作图痕迹,不写作法)
如图,E、F是四边形ABCD的对角线BD上的两点, AE∥CF,AE=CF,BE=DF. 求证: ΔADE≌ΔCBF.