(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为、,试在“8”字形 曲线上求点,使得是直角.(3)过点作直线分别交“8”字形曲线中上、下两个半圆于点,求的最大长度.
化简下列各式(其中各字母均为正数):(1)×0+80.25×+(×)6-;(2);(3)
已知函数f(x)=mx+3,g(x)=x2+2x+m.(1)求证:函数f(x)-g(x)必有零点;(2)设函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,求实数m的取值范围.
已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.(1)求f(x)与g(x)的解析式;(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函数,求实数λ的取值范围.
已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.(1)求a、b的值及函数f(x)的解析式;(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]时有解,求实数k的取值范围.
求二次函数f(x)=x2-4x-1在区间[t,t+2]上的最小值g(t),其中t∈R.