(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是,双曲线的左、右顶点、是该圆与轴的交点,双曲线与半圆相交于与轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为、,试在“8”字形 曲线上求点,使得是直角.(3)过点作直线分别交“8”字形曲线中上、下两个半圆于点,求的最大长度.
设函数 (Ⅰ)求的值域 (Ⅱ)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值
(1)已知直线经过点P(-2,1),且点A(-1,-2)到的距离为1,求直线的方程。 (2)已知过点A(2,-1)的圆与直线x+y=1相切,且圆心在直线y=-2x上,求圆的方程。
若双曲线的右焦点恰好在抛物线的准线上,求P的值:
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(c>0)的准线与x轴相交于点A,,过点A的直线与椭圆相交于P,Q两点, (1)求椭圆的离心率及方程。 (2)若·,求直线PQ的方程。 (3)设,过点P且平行于准线l的直线与椭圆相交于另一点M,证明
、已知函数的反函数为 (1)若,求的取值范围D; (2)设函数;当D时,求函数H的值域