如图所示,一段街道的两边缘所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB的方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在的位置(用点C标出);(2)已知MN=20m,MD=8m,PN=24m,求(1)中的点C到胜利街口的距离CM.
“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?
如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2; (1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标; (2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1; (3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.
现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问: (1)第50个数是什么数? (2)把从第1个数开始的前2015个数相加,结果是多少? (3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?
解不等式3(x+1)﹣6≤4x,并把解集在数轴上表示出来.
如图,在四边形ABCD中,AB⊥BC,CD⊥BC,AB=2,BC=CD=4,AC、BD交于点O,在线段BC上,动点M以每秒1个单位长度的速度从点C出发向点B做匀速运动,同时动点N从点B出发向点C做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做BC的垂线,分别交AC、BD于点E、F,连接EF.若运动时间为x秒,在运动过程中四边形EMNF总为矩形(点M、N重合除外). (1)求点N的运动速度; (2)当x为多少时,矩形EMNF为正方形? (3)当x为多少时,矩形EMNF的面积S最大?并求出最大值.