(本小题满分13分)已知以C为圆心的动圆过定点,且与圆(B为圆心)相切,点C的轨迹为曲线T.设Q为曲线T上(不在x轴上)的动点,过点A作OQ(O为坐标原点)的平行线交曲线T于M,N两点.(Ⅰ)求曲线T的方程;(Ⅱ)是否存在常数,使总成立?若存在,求;若不存在,说明理由.
(本小题满分14分)函数。(1)求的周期;(2)在上的减区间;(3)若,,求的值。
(本小题满分12分)如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤的图象与y轴交于点(0,1). (Ⅰ)求φ的值; (Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
(本小题满分12分)已知函数,,(1)求实数a的值;(2)求函数在的值域。
设数列为等差数列,且;数列的前n项和为,且.(Ⅰ)求数列,的通项公式;(Ⅱ)若,为数列的前n项和,求
设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.(Ⅰ)求q的值;(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.