已知命题:存在使得成立,命题:对于任意,函数恒有意义.(1)若是真命题,求实数的取值范围;(2)若是假命题,求实数的取值范围.
如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D.连接CF交AB于点E. (1)求证:DE2=DB•DA; (2)若DB=2,DF=4,试求CE的长.
已知函数,. (1)设. ①若函数在处的切线过点,求的值; ②当时,若函数在上没有零点,求的取值范围; (2)设函数,且(),求证:当时,.
如图,已知是椭圆:上的任一点,从原点向圆:作两条切线,分别交椭圆于点、. (1)若直线,的斜率存在,并记为,,求证:为定值; (2)试问是否为定值?若是,求出该值;若不是,说明理由.
如图,在四棱锥中,底面梯形中,,平面平面,是等边三角形,已知,,,且. (1)求证:平面平面; (2)求二面角的余弦值; (3)试确定的值,使三棱锥体积为三棱锥体积的3倍.
已知的角的对边分别为,其面积,,且;等差数列中,且,公差.数列的前项和为,且,. (1)求数列、的通项公式; (2)设, 求数列的前项和.