已知二次函数f(x)=ax2+bx+c .(1) 设集合A={x|f(x)=x}.①若A={1,2},且f(0)=2,求f(x)的解析式;②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).(2) 设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:.
三个正数成等差数列,它们的和等于15,如果它们分别加上1,3,9就成为等比数列,求此三个数.
已知等比数列{an},若a1+a2+a3=7,a1a2a3=8,求an.
数列{an}是等差数列,a1=50,d=-0.6.(1)从第几项开始有an<0;(2)求此数列的前n项和的最大值.
如图2-3-1,一个堆放铅笔的V型架的最下面一层放1枝铅笔,往上每一层都比它下面一层多放1枝.最上面一层放120枝,这个V型架上共放着多少枝铅笔?图2-3-1
已知数列{an}的前n项和为Sn=-n2+n,试求出数列{|an|}的前n项和Tn.