已知二次函数f(x)=ax2+bx+c .(1) 设集合A={x|f(x)=x}.①若A={1,2},且f(0)=2,求f(x)的解析式;②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).(2) 设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:.
(本小题满分12分) 已知数列是首项为1的等差数列,且, 若 成等比数列. (1)求数列的通项公式;(2)设,求数列的前项和.
.(本小题满分12分) 已知函数的最小正周期为,且当时,函数的最小值为0。 (I)求函数的表达式; (II)在△ABC,若的值。
.(本小题满分14分)已知的顶点,在椭圆上,在直线上,且. (1)当边通过坐标原点时,求的长及的面积; (2)当,且斜边的长最大时,求所在直线的方程.
.(本小题满分12分)如图所示,矩形ABCD的边AB=,BC=2,PA⊥平面ABCD,PA=2,现有数据: ①;②;③;建立适当的空间直角坐标系, (I)当BC边上存在点Q,使PQ⊥QD时,可能取所给数据中的哪些值?请说明理由; (II)在满足(I)的条件下,若取所给数据的最小值时,这样的点Q有几个? 若沿BC方向依次记为,试求二面角的大小.
.(本小题满分12分)已知,,设:函数在上单调递减;q:曲线与x轴交于不同的两点,如果p且q为假命题,p或q为真命题,求实数a的取值范围.