(本小题满分16分)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第个图形包含个“福娃迎迎”.(1)求出;(2)利用合情推理的“归纳推理思想”归纳出与的关系式(不需写出证明过程);(3)根据你得到的关系式求的表达式.
(本小题满分13分) 已知函数的导数.a,b为实数,. (1)若在区间上的最小值、最大值分别为、1,求a、b的值; (2)在 (1) 的条件下,求曲线在点P(2,1)处的切线方程.
(本小题满分13分) 有A、B、C、D、E共5个口袋,每个口袋装有大小和质量均相同的4个红球和2个黑球,现每次从其中一个口袋中摸出3个球,规定:若摸出的3个球恰为2个红球和1个黑球,则称为最佳摸球组合. (1)求从口袋A中摸出的3个球为最佳摸球组合的概率; (2)现从每个口袋中摸出3个球,求恰有3个口袋中摸出的球是最佳摸球组合的概率.
(本小题满分13分) 已知函数的图象按向量平移得到函数的图象. (1)求实数a、b的值; (2)设函数,求函数的单调递增区间和最值.
(本小题满分12分) 古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用. 现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题: (1)写出a1,a2,a3,并求出an; (2)记,求和(); (其中表示所有的积的和) (3)证明:.
(本小题满分12分) 设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知. (1)求椭圆C的标准方程; (2)若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN; (3)求三角形ABF面积的最大值.